UMAMIT14 is an amino acid exporter involved in phloem unloading in Arabidopsis roots

نویسندگان

  • Julien Besnard
  • Réjane Pratelli
  • Chengsong Zhao
  • Unnati Sonawala
  • Eva Collakova
  • Guillaume Pilot
  • Sakiko Okumoto
چکیده

Amino acids are the main form of nitrogen transported between the plant organs. Transport of amino acids across membranes is mediated by specialized proteins: importers, exporters, and facilitators. Unlike amino acid importers, amino acid exporters have not been thoroughly studied, partly due to a lack of high-throughput techniques enabling their isolation. Usually Multiple Acids Move In and out Transporters 14 (UMAMIT14) from Arabidopsis shares sequence similarity to the amino acid facilitator Silique Are Red1 (UMAMIT18), and has been shown to be involved in amino acid transfer to the seeds. We show here that UMAMIT14 is also expressed in root pericycle and phloem cells and mediates export of a broad range of amino acids in yeast. Loss-of-function of UMAMIT14 leads to a reduced shoot-to-root and root-to-medium transfer of amino acids originating from the leaves. These fluxes were further reduced in an umamti14 umamit18 double loss-of-function mutant. This study suggests that UMAMIT14 is involved in phloem unloading of amino acids in roots, and that UMAMIT14 and UMAMIT18 are involved in the radial transport of amino acids in roots, which is essential for maintaining amino acid secretion to the soil.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle

In plants, a complex mixture of solutes and macromolecules is transported by the phloem. Here, we examined how solutes and macromolecules are separated when they exit the phloem during the unloading process. We used a combination of approaches (non-invasive imaging, 3D-electron microscopy, and mathematical modelling) to show that phloem unloading of solutes in Arabidopsis roots occurs through p...

متن کامل

NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis.

Boron (B) in soil is taken up by roots through NIP5;1, a boric acid channel, and is loaded into the xylem by BOR1, a borate exporter. Here, the function of Arabidopsis thaliana NIP6;1, the most similar gene to NIP5;1, was studied. NIP6;1 facilitates the rapid permeation of boric acid across the membrane but is completely impermeable to water. NIP6;1 transcript accumulation is elevated in respon...

متن کامل

Specific plasma membrane aquaporins of the PIP1 subfamily are expressed in sieve elements and guard cells.

BACKGROUND INFORMATION Transmembrane water flow is aided by water-specific channel proteins, aquaporins. Plant genomes code for approx. 35 expressed and functional aquaporin isoforms. Plant aquaporins fall into four different subfamilies of which the PIPs (plasma membrane intrinsic proteins) constitute the largest and evolutionarily most conserved subfamily with 13 members in Arabidopsis and ma...

متن کامل

The predominance of the apoplasmic phloem-unloading pathway is interrupted by a symplasmic pathway during Chinese jujube fruit development.

Phloem unloading plays a pivotal part in photoassimilate transport and partitioning into sink organs. However, it remains unclear whether the unloading pathway alters to adapt to developmental transitions in sinks, especially in fleshy fruits accumulating a high level of soluble sugars. Using a combination of electron microscopy, transport of the phloem-mobile symplasmic tracer carboxyfluoresce...

متن کامل

The sucrose transporter StSUT1 localizes to sieve elements in potato tuber phloem and influences tuber physiology and development.

The sucrose (Suc) H(+)-cotransporter StSUT1 from potato (Solanum tuberosum), which is essential for long-distance transport of Suc and assumed to play a role in phloem loading in mature leaves, was found to be expressed in sink tubers. To answer the question of whether SUT1 serves a function in phloem unloading in tubers, the promoter was fused to gusA and expression was analyzed in transgenic ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 67  شماره 

صفحات  -

تاریخ انتشار 2016